CDC25A functions as a novel Ar corepressor in prostate cancer cells.

نویسندگان

  • Yung-Tuen Chiu
  • Hui-Ying Han
  • Steve Chin-Lung Leung
  • Hiu-Fung Yuen
  • Chee-Wai Chau
  • Zhiyong Guo
  • Yun Qiu
  • Kwok-Wah Chan
  • Xianghong Wang
  • Yong-Chuan Wong
  • Ming-Tat Ling
چکیده

Androgen receptor (AR) is a ligand-dependent transcription factor and its activity is regulated by numerous AR coregulators. Aberrant expression of AR coregulators in prostate cancer cells has an important role in the development and progression of prostate cancer. We report here that CDC25A, a cell cycle-promoting phosphatase over-expressed in a number of cancers, functions as an AR coregulator suppressing the AR transcriptional activity. In this study, we found that CDC25A is upregulated in human prostate cancer and its expression level is positively associated with the Gleason score and disease metastasis. More importantly, we showed that CDC25A can physically interact with AR through its putative catalytic domain. In addition, ectopic expression of CDC25A in prostate cancer cell lines suppresses PSA and Probasin promoter activities significantly, indicating that CDC25A may function as an AR corepressor. This was further confirmed by knockdown of endogenous CDC25A expression using small interfering RNA (siRNA), which resulted in upregulation of PSA promoter activity. Moreover, a truncated mutant that does not interact with AR fails to suppress the PSA promoter activity, indicating that CDC25A downregulates androgen-responsive promoter by physically interacting with AR. Taken together, our results demonstrated a novel function of CDC25A in the regulation of androgen signaling in human prostate cancer cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HOXB13 induces growth suppression of prostate cancer cells as a repressor of hormone-activated androgen receptor signaling.

Androgen receptor (AR) signals play a decisive role in regulating the growth and differentiation of both normal and cancerous prostate cells by triggering the regulation of target genes, in a process in which AR cofactors have critical functions. Because of the highly prostate-specific expression pattern of HOXB13, we studied the role of this homeodomain protein in prostate cells. Expression of...

متن کامل

Receptor Signaling Cells as a Repressor of Hormone-Activated Androgen HOXB13 Induces Growth Suppression of Prostate Cancer

Androgen receptor (AR) signals play a decisive role in regulating the growth and differentiation of both normal and cancerous prostate cells by triggering the regulation of target genes, in a process in which AR cofactors have critical functions. Because of the highly prostate-specific expression pattern of HOXB13, we studied the role of this homeodomain protein in prostate cells. Expression of...

متن کامل

The Chicken Ovalbumin Upstream Promoter-Transcription Factor II Negatively Regulates the Transactivation of Androgen Receptor in Prostate Cancer Cells

Androgen receptor (AR) is involved in the development and progression of prostate cancers. However, the mechanisms by which this occurs remain incompletely understood. In previous reports, chicken ovalbumin upstream promoter-transcription factor II (COUP-TF II) has been suggested to play a role in the development of cancers. In the present study, we explored a putative role of COUP-TF II in pro...

متن کامل

Specificity of cyclin D1 for androgen receptor regulation.

Androgen receptor (AR) activity is required for prostate growth, differentiation, and secretion. Deregulation of AR activity results in inappropriate mitogenic signaling and is thought to contribute both to the initiation and progression of prostate cancers. Cyclin D1 functions as a strong AR corepressor by directly interacting with and inhibiting receptor activity. However, the extent to which...

متن کامل

Control of prostate cell growth: BMP antagonizes androgen mitogenic activity with incorporation of MAPK signals in Smad1.

Alterations in the signaling pathways of bone morphogenetic proteins (BMPs) and activation of the ERK/MAP kinase (MAPK) pathway by growth factors have been implicated in the development and progression of prostate cancer. Smad1 acts as a substrate for MAPKs and also performs a central role in transmitting signals from BMPs. We found that BMPs/Smad1 signaling inhibits the growth of androgen-sens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 385 2  شماره 

صفحات  -

تاریخ انتشار 2009